Geodesic, Flow Front and Voronoi Diagram

نویسندگان

چکیده

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

The Geodesic Farthest-point Voronoi Diagram in a Simple Polygon

Given a set of point sites in a simple polygon, the geodesic farthest-point Voronoi diagram partitions the polygon into cells, at most one cell per site, such that every point in a cell has the same farthest site with respect to the geodesic metric. We present an O(n log log n+m logm)time algorithm to compute the geodesic farthest-point Voronoi diagram of m point sites in a simple n-gon. This i...

متن کامل

Time - Based Voronoi Diagram ∗

We consider a variation of Voronoi diagram, or time-based Voronoi diagram, for a set S of points in the presence of transportation lines or highways in the plane. A shortest time-distance path from a query point to any given point in S is a path that takes the least travelling time. The travelling speeds and hence travelling times of the subpaths along the highways and in the plane are differen...

متن کامل

Rounding Voronoi Diagram

Computational geometry classically assumes real-number arithmetic which does not exist in actual computers. A solution consists in using integer coordinates for data and exact arithmetic for computations. This approach implies that if the results of an algorithm are the input of another, these results must be rounded to match this hypothesis of integer coordinates. In this paper, we treat the c...

متن کامل

The Farthest-Point Geodesic Voronoi Diagram of Points on the Boundary of a Simple Polygon

Given a set of sites (points) in a simple polygon, the farthest-point geodesic Voronoi diagram partitions the polygon into cells, at most one cell per site, such that every point in a cell has the same farthest site with respect to the geodesic metric. We present an O((n + m) log logn)time algorithm to compute the farthest-point geodesic Voronoi diagram for m sites lying on the boundary of a si...

متن کامل

A Nearly Optimal Algorithm for the Geodesic Voronoi Diagram in a Simple Polygon

The geodesic Voronoi diagram ofm point sites inside a simple polygon of n vertices is a subdivision of the polygon into m cells, one to each site, such that all points in a cell share the same nearest site under the geodesic distance. The best known lower bound for the construction time is Ω(n+m logm), and a matching upper bound is a long-standing open question. The state-of-theart construction...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Computer-Aided Design and Applications

سال: 2007

ISSN: 1686-4360

DOI: 10.1080/16864360.2007.10738521